A Local Least Squares Framework for Ensemble Filtering
نویسنده
چکیده
Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble Kalman filter methods is derived starting from the nonlinear filtering problem. When working in a joint state– observation space, many features of ensemble filtering algorithms are easier to derive and compare. The ensemble filter methods derived here make a (local) least squares assumption about the relation between prior distributions of an observation variable and model state variables. In this context, the update procedure applied when a new observation becomes available can be described in two parts. First, an update increment is computed for each prior ensemble estimate of the observation variable by applying a scalar ensemble filter. Second, a linear regression of the prior ensemble sample of each state variable on the observation variable is performed to compute update increments for each state variable ensemble member from corresponding observation variable increments. The regression can be applied globally or locally using Gaussian kernel methods. Several previously documented ensemble Kalman filter methods, the perturbed observation ensemble Kalman filter and ensemble adjustment Kalman filter, are developed in this context. Some new ensemble filters that extend beyond the Kalman filter context are also discussed. The two-part method can provide a computationally efficient implementation of ensemble filters and allows more straightforward comparison of methods since they differ only in the solution of a scalar filtering problem.
منابع مشابه
تحلیل حرکت جریانات دریائی در تصاویر حرارتی سطح آب دریا
Oceanographic images obtained from environmental satellites by a wide range of sensors allow characterizing natural phenomena through different physical measurements. For instance Sea Surface Temperature (SST) images, altimetry data and ocean color data can be used for characterizing currents and vortex structures in the ocean. The purpose of this thesis is to derive a relatively complete frame...
متن کاملLocal Kernels that Approximate Bayesian Regularization and Proximal Operators
In this work, we broadly connect kernel-based filtering (e.g. approaches such as the bilateral filters and nonlocal means, but also many more) with general variational formulations of Bayesian regularized least squares, and the related concept of proximal operators. The latter set of variational/Bayesian/proximal formulations often result in optimization problems that do not have closed-form so...
متن کاملA Unified Framework for Adaptive Filtering
Having recently shown that the LMS adaptive filtering technique can be viewed as an iterative linear equation solver applied to a time varying linear equation set directly related to the Wiener-Hopf equation, we address in this paper the question if a larger class of adaptive filtering algorithms can be formulated within the framework of the theory of iterative linear equation solvers. We show ...
متن کاملDynamic Analysis of Neural Encoding by Point Process Adaptive Filtering
Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal e...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کامل